В данном исследовании использованы ежедневные данные с января 2013 года по январь 2017 года, источником которых является база данных Bloomberg. Период исследования охватывает два временных интервала - до введения СПОК (свободно плавающего обменного курса) и перехода к ИТ (инфляционному таргетированию), и после.
Используемые обозначения:
Y = курс тенге или объясняемая переменная;
X1 = цена на нефть или объясняющая переменная;
X2 = курс рубля или объясняющая переменная.
Гипотеза:
H0 = совокупное влияние цен на нефть и курса рубля на казахстанский тенге не изменилось с введением режима ИТ;
H1 = совокупное влияние изменилось.
Модель 1. Первоначально данные по трем показателям (Y, X1, X2) взяты с временным интервалом от 01.01.2013 по 20.08.2015, т.е. за 2 года и 8 месяцев до введения ИТ и СПОК с целью узнать какой была причинно-следственная связь между переменными. Динамика обменного курса доллара к казахстанскому тенге, российскому рублю и ценам на нефть за соответствующий период представлена на рисунках 1 и 1.1.
Рис. 1 Динамика цен на нефть и курса рубля (01.13 – 08.15), Bloomberg
Рис. 1.1 Динамика обменного курса тенге (01.13 – 08.15), Bloomberg
Как можно заметить, после перехода Центральным банком Российской Федерации на свободноплавающий валютный режим (11/2014), между ценами на нефть и курсом рубля к доллару США наблюдается более заметная обратная динамика, чего нельзя сказать о казахстанском тенге, курс которого на протяжении следующих 9-ти месяцев держался приблизительно на одном уровне по отношению к доллару США (185 тг за доллар).
Для установления силы влияния (корреляции) одного фактора на другой и направленности взаимодействия между переменными следует построить графики корреляционных полей исходных данных Y против X1 и Y против X2 (рис. 2). Как можно заметить, между показателями за исследуемый период не наблюдалось какой-либо статистически значимой зависимости. Точки на графике фактически показывают, что с изменением по оси X1 (цен на нефть) и X2 (курсом рубля), ось Y (курс тенге) не изменялась, т.е. X1 и X2 не имели значимого эффекта на Y. Другими словами, курс тенге так и держался вблизи уровня в 185 тенге за доллар США, в то время как цена на нефть резко снизилась со 115 до 50 долларов за баррель, а курс рубля с 35 до 65 рублей за один доллар США. Таким образом, хотя и можно провести линию тренда через эти точки, диаграмма рассеяния (корреляционное поле) не показывает какой-либо зависимости между переменными, что имеет смысл, так как в этот период НБРК придерживался фиксированного курса национальной валюты. С этой точки зрения, дальнейшее проведение анализов не имеет какой-либо значимости, так как условная линия тренда горизонтальна с осью X (значение наклона равно нулю), что говорит об отсутствии какой-либо корреляции между переменными.
Рис. 2 Диаграмма рассеяния (Y vs X1, Y vs X2), Bloomberg
Модель 2. Данные по трем показателям (Y, X1, X2) взяты с временным интервалом от 21.08.2015 по 13.01.2017, т.е. 18 месяцев после введения ИТ и СПОК с целью узнать какой стала связь между переменными.
Динамика обменного курса доллара США к казахстанскому тенге, российскому рублю и ценам на нефть за соответствующий период представлена на рисунках 3 и 3.1.
Рис. 3 Динамика цен на нефть и курса рубля (08.15 – 01.17)
Рис. 3.1 Динамика обменного курса тенге (08.15 – 01.17)
Можно заметить, что за отчетный период тенге стал более чувствительно реагировать на изменение цен на нефть, а его динамика изменения схожа с динамикой изменения российского рубля. Но о характере этой зависимости можно будет узнать после построения корреляционного поля (рисунок 4).
Рис. 4 Диаграмма рассеяния (Y vs X1, Y vs X2), Bloomberg
Можно заметить, что диаграмма рассеяния свидетельствует о наличии нелинейной зависимости (более похожую на полиномиальную) между Y vs X1 и Y vs X2 после введения режима ИТ. Далее приведены результаты парной* полиномиальной регрессии между 2.1) Y и X1 и 2.2) Y и X2 (сделанные с помощью статистического языка R по данным за рассматриваемый период):
(2.1) -
> fit<-lm(data$Y~data$X1 + I(data$X1^2))
> summary(fit)
Call:
lm(formula = data$Y ~ data$X1 + I(data$X1^2))
Residuals:
Min 1Q Median 3Q Max
-98.31 -9.48 10.26 17.20 32.55
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 698.54499 39.81471 17.545 < 2e-16 ***
data$X1 -15.42756 1.82598 -8.449 2.73e-16 ***
I(data$X1^2) 0.15678 0.02064 7.595 1.36e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 25.59 on 541 degrees of freedom
Multiple R-squared: 0.2198, Adjusted R-squared: 0.217
F-statistic: 76.23 on 2 and 541 DF, p-value: < 2.2e-16
Значимость множественного коэффициента корреляции проверена с помощью F-критерия. Наблюдаемое значение равно 19,1, а критическое 1,15, что в данном случае свидетельствует о значимости коэффициента корреляции и коэффициента детерминации. Тогда уравнение полиномиальной регрессии приобретает следующий вид: Y = 698,5 – 15,4X1 + 0.16X1^2.
(2.2) -
> fit<-lm(data$Y~data$X2 + I(data$X2^2))
> summary(fit)
Call:
lm(formula = data$Y ~ data$X2 + I(data$X2^2))
Residuals:
Min 1Q Median 3Q Max
-99.471 -4.289 9.086 16.517 33.338
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1478.82657 182.39856 8.108 3.47e-15 ***
data$X2 -35.42747 5.31096 -6.671 6.31e-11 ***
I(data$X2^2) 0.27102 0.03849 7.042 5.79e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 26.31 on 541 degrees of freedom
Multiple R-squared: 0.1754, Adjusted R-squared: 0.1724
F-statistic: 57.55 on 2 and 541 DF, p-value: < 2.2e-16
Полученное уравнение регрессии: Y = 1478.8 – 35,43X1 + 0.27X2^2. На основании полученных исходных данных были определены коэффициенты корреляции для всех показателей, чтобы количественно оценить тесноту их взаимосвязи. Снизу прилагается корреляционная матрицамодели 2 (2.1 и 2.2).
Рис. 5 Корреляционная матрица Модели 2 (2.1 и 2.2)
Как следует из матрицы, Модель 2 имеет определенную связь между признаком Y и факторами X1 и X2. При этом связь между Y (курсом тенге) и X1 (ценами на нефть) отрицательная и более значительная чем с X2 (курсом рубля), чего и следовало ожидать (с падением цен на нефть курс тенге опускается и наоборот). Примечательно, что корреляция между X2 (курсом рубля) и X1 (ценами на нефть) довольно значимая, намного превышающая соответствующие показатели между: 1) Y (курсом тенге) и X1 (ценами на нефть); 2) Y (курсом тенге) и X2 (курсом рубля).
Проведенный анализ приводит к выводу о том, что 1) до введения режима ИТ не было прямой статистической взаимосвязи между курсом тенге и ценами на нефть с российским рублем, но 2) после введения ИТ можно заметить определенное влияние российского рубля и нефтяных цен на казахстанский тенге (гипотеза H1). Однако, посчитать совокупное влияние факторов X1 и X2 на Y не получилось в связи с линейной зависимостью между курсом рубля и ценами на нефть. При этом связь между тенге и ценами на нефть является обратной, в то время как связь между курсом тенге и курсом рубля, соответственно, прямая. Хотим отметить, что в ходе анализа было подтверждено, что российский рубль намного более зависим от цен на нефть, нежели казахстанский тенге. Резюмируя всё вышесказанное, можно сделать вывод о том, что эластичность тенге существенно возросла, тем не менее, для нас является очевидным (низкие значения коэффициентов корреляции) то, что по-прежнему присутствует ряд нерыночных факторов, которые могут оказывать влияние на динамику курса национальной валюты.